References#

[mer]

Biostatistics. https://www.merriam-webster.com/dictionary/biostatistics. Accessed 4 Aug. 2023.

[hea21]

Sam the chatbot. 2021. URL: https://www.headtohealth.gov.au/find-with-sam.

[tex22]

Text classification - introduction. Jul 2022. URL: https://developers.google.com/machine-learning/guides/text-classification.

[ATG+20]

Minale A Abebe, Joe Tekli, Fekade Getahun, Richard Chbeir, and Gilbert Tekli. Generic metadata representation framework for social-based event detection, description, and linkage. Knowledge-Based Systems, 188:104817, 2020. URL: https://doi.org/10.1016/j.knosys.2019.06.025.

[ASFL11]

Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J Leaf. Multiple imputation by chained equations: what is it and how does it work? International journal of methods in psychiatric research, 20(1):40–49, 2011.

[BTY+20]

Oliver Baclic, Matthew Tunis, Kelsey Young, Coraline Doan, Howard Swerdfeger, and Justin Schonfeld. Artificial intelligence in public health: challenges and opportunities for public health made possible by advances in natural language processing. Canada Communicable Disease Report, 46(6):161, 2020. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343054/.

[Ben16]

Elliot Bendoly. Fit, bias, and enacted sensemaking in data visualization: frameworks for continuous development in operations and supply chain management analytics. Journal of Business Logistics, 37(1):6–17, 2016.

[Ble12]

David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012. URL: https://dl.acm.org/doi/pdf/10.1145/2133806.2133826.

[BOConnor17]

Su Lin Blodgett and Brendan O'Connor. Racial disparity in natural language processing: a case study of social media african-american english. arXiv preprint arXiv:1707.00061, 2017. URL: https://arxiv.org/abs/1707.00061.

[BCZ+16]

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 2016. URL: https://arxiv.org/abs/1607.06520.

[BZA20]

Azzedine Boukerche, Lining Zheng, and Omar Alfandi. Outlier detection: methods, models, and classification. ACM Computing Surveys, 53:1–37, 06 2020. doi:10.1145/3381028.

[BPR+19]

Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich. Data validation for machine learning. In MLSys. 2019.

[BSH+98]

S. E. Brossette, A. P. Sprague, J. M. Hardin, K. B. Waites, W. T. Jones, and S. A. Moser. Association rules and data mining in hospital infection control and public health surveillance. Journal of the American Medical Informatics Association, 5(4):373–381, 1998. doi:10.1136/jamia.1998.0050373.

[Bro20]

Jason Brownlee. Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery, 2020.

[BSaatB+18]

Mohamad Adam Bujang, Nadiah Sa’at, Tg Mohd Ikhwan Tg Abu Bakar, Lim Chien Joo, and others. Sample size guidelines for logistic regression from observational studies with large population: emphasis on the accuracy between statistics and parameters based on real life clinical data. The Malaysian journal of medical sciences: MJMS, 25(4):122, 2018.

[Buo18]

Joy Buolamwini. Gender shades: intersectional accuracy disparities in commercial gender classification. proceedings of machine learning research. Proceedings of Machine Learning Research, 81:1–15, 2018. URL: https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf.

[Bur]

Jennifer Burney. Bias and error in econometric analyses using spatial data. URL: https://pdel.ucsd.edu/environment/econometric-analyses.html.

[Cal21]

Aylin Caliskan. Detecting and mitigating bias in natural language processing. Res. Rep, Brookings Inst., Washington, DC [Google Scholar], 2021. URL: https://www.brookings.edu/research/detecting-and-mitigating-bias-in-natural-language-processing/.

[Cap21]

Bernadette Capili. Overview: cross-sectional studies. The American journal of nursing, 121(10):59, 2021.

[CMM83]

Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell. 1 - an overview of machine learning. In Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learning, pages 3–23. Morgan Kaufmann, San Francisco (CA), 1983. URL: https://www.sciencedirect.com/science/article/pii/B9780080510545500054, doi:https://doi.org/10.1016/B978-0-08-051054-5.50005-4.

[Cha19]

Harsh Chandra. Artificial intelligence (ai) vs machine learning (ml) vs big data. Heartbeat. https://heartbeat. fritz. ai/artificial-intelligence-ai-vs-machine-learning-ml-vs-big-data-909906eb6a92, 2019.

[CJS18]

Irene Chen, Fredrik D. Johansson, and David Sontag. Why is my classifier discriminatory? Advances in Neural Information Information Processing Systems, 31:3543–3554, December 2018. URL: https://arxiv.org/abs/1805.12002, doi:10.48550/ARXIV.1805.12002.

[CHC19]

Mike Conway, Mengke Hu, and Wendy W Chapman. Recent advances in using natural language processing to address public health research questions using social media and consumergenerated data. Yearbook of medical informatics, 28(01):208–217, 2019. URL: https://doi.org/10.1055/s-0039-1677918.

[CGB+18]

Brenda Curtis, Salvatore Giorgi, Anneke EK Buffone, Lyle H Ungar, Robert D Ashford, Jessie Hemmons, Dan Summers, Casey Hamilton, and H Andrew Schwartz. Can twitter be used to predict county excessive alcohol consumption rates? PloS one, 13(4):e0194290, 2018. URL: https://pubmed.ncbi.nlm.nih.gov/29617408/.

[dAlessandroONeilL17]

Brian d'Alessandro, Cathy O'Neil, and Tom LaGatta. Conscientious classification: a data scientist's guide to discrimination-aware classification. Big data, 5(2):120–134, 2017. URL: https://www.liebertpub.com/doi/10.1089/big.2016.0048.

[Dal18]

Hercules Dalianis. Basic building blocks for clinical text processing. In Clinical Text Mining, pages 55–82. Springer, 2018. URL: https://link.springer.com/chapter/10.1007/978-3-319-78503-5_7.

[DCP20]

Ashlynn R Daughton, Rumi Chunara, and Michael J Paul. Comparison of social media, syndromic surveillance, and microbiologic acute respiratory infection data: observational study. JMIR public health and surveillance, 6(2):e14986, 2020. URL: https://doi.org/10.2196/14986.

[DK19]

T. Davenport and R. Kalakota. The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2):94–98, 2019. URL: https://doi.org/10.7861/futurehosp.6-2-94, doi:10.7861/futurehosp.6-2-94.

[DRA+20]

Sanket S Dhruva, Joseph S Ross, Joseph G Akar, Brittany Caldwell, Karla Childers, Wing Chow, Laura Ciaccio, Paul Coplan, Jun Dong, Hayley J Dykhoff, and others. Aggregating multiple real-world data sources using a patient-centered health-data-sharing platform. NPJ digital medicine, 3(1):60, 2020.

[DFW+19]

Emily Dinan, Angela Fan, Adina Williams, Jack Urbanek, Douwe Kiela, and Jason Weston. Queens are powerful too: mitigating gender bias in dialogue generation. arXiv preprint arXiv:1911.03842, 2019. URL: https://aclanthology.org/2020.emnlp-main.656/.

[DBP+19]

David Dorr, Cosmin A Bejan, Christie Pizzimenti, Sumeet Singh, Matt Storer, and Ana Quinones. Identifying patients with significant problems related to social determinants of health with natural language processing. In MEDINFO 2019: Health and Wellbeing e-Networks for All, pages 1456–1457. IOS Press, 2019. URL: https://ebooks.iospress.nl/publication/52247.

[EKLT19]

Vera Ehrenstein, Hadi Kharrazi, Harold Lehmann, and C. Oliver Taylor. Obtaining data from electronic health records. In Tools and Technologies for Registry Interoperability, Registries for Evaluating Patient Outcomes: A User's Guide, 3rd Edition, Addendum 2. Agency for Healthcare Research and Quality (US), Oct 2019. URL: https://www.ncbi.nlm.nih.gov/books/NBK555546/.

[FJC18]

Keith Feldman, Reid A Johnson, and Nitesh V Chawla. The state of data in healthcare: path towards standardization. Journal of Healthcare Informatics Research, 2:248–271, 2018.

[FV94a]

Sandra Ferketich and Joyce Verran. Focus on psychometrics. an overview of data transformation. Research in nursing & health, 17(5):393–396, 1994.

[FV94b]

Susan Ferketich and Joyce Verran. An overview of data transformation. Research in Nursing & Health, 17(5):393–396, 1994. URL: https://doi.org/10.1002/nur.4770170510, doi:10.1002/nur.4770170510.

[Fra22]

Yoko Franchetti. Use of propensity scoring and its application to real-world data: advantages, disadvantages, and methodological objectives explained to researchers without using mathematical equations. The Journal of Clinical Pharmacology, 62(3):304–319, 2022. doi:10.1002/jcph.1989.

[FPC+15]

P Fu, A Panneerselvam, B Clifford, A Dowlati, PC Ma, G Zeng, B Halmos, and RS Leidner. Simpson's paradox–aggregating and partitioning populations in health disparities of lung cancer patients. Statistical Methods in Medical Research, 24(6):937–948, 2015. doi:10.1177/0962280211434179.

[FTF15]

Isaac Chun-Hai Fung, Zion Tsz Ho Tse, and King-Wa Fu. The use of social media in public health surveillance. Western Pacific surveillance and response journal: WPSAR, 6(2):3, 2015. URL: https://doi.org/10.5365%2FWPSAR.2015.6.1.019.

[Gan19]

Kavita Ganesan. All you need to know about text preprocessing for nlp and machine learning. KDnuggets, 2019. URL: https://www.kdnuggets.com/2019/04/text-preprocessing-nlp-machine-learning.html.

[GXT16]

Jerry Gao, Chunli Xie, and Chuanqi Tao. Big data validation and quality assurance – issuses, challenges, and needs. In 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), volume, 433–441. 2016. doi:10.1109/SOSE.2016.63.

[GK18]

Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural language generation: core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61:65–170, 2018. URL: https://www.jair.org/index.php/jair/article/view/11173.

[GVMV+05]

Andrew Gelman, Iven Van Mechelen, Geert Verbeke, Daniel F Heitjan, and Michel Meulders. Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics, 61(1):74–85, 2005.

[GNS+20]

Mohammad Ghassemi, Tristan Naumann, Peter Schulam, Andrew L. Beam, Irene Y. Chen, and Rajesh Ranganath. A review of challenges and opportunities in machine learning for health. In AMIA Joint Summits on Translational Science proceedings, 191–200. 2020.

[GJKeal19]

Omri Gottesman, Fredrik Johansson, Matthieu Komorowski, and et al. Guidelines for reinforcement learning in healthcare. Nature Medicine, 25(1):16–18, 2019. doi:10.1038/s41591-018-0310-5.

[GSC16]

David Gotz, Shun Sun, and Nan Cao. Adaptive contextualization: combating bias during high-dimensional visualization and data selection. In Proceedings of the 21st International Conference on Intelligent User Interfaces, 85–95. 2016.

[HAM15]

Steve Halligan, Douglas G Altman, and Susan Mallett. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. European radiology, 25(4):932–939, 2015. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356897/.

[HPM19]

Sariel Har-Peled and Sepideh Mahabadi. Near neighbor: who is the fairest of them all? Advances in Neural Information Processing Systems, 2019. URL: https://papers.nips.cc/paper/2019/hash/742141ceda6b8f6786609d31c8ef129f-Abstract.html.

[HRK22]

Megan Healy, Alison Richard, and Khameer Kidia. How to reduce stigma and bias in clinical communication: a narrative review. Journal of General Internal Medicine, pages 1–8, 2022. URL: https://link.springer.com/article/10.1007/s11606-022-07609-y.

[HFL+22]

Daniel Hershcovich, Stella Frank, Heather Lent, Miryam de Lhoneux, Mostafa Abdou, Stephanie Brandl, Emanuele Bugliarello, Laura Cabello Piqueras, Ilias Chalkidis, Ruixiang Cui, and others. Challenges and strategies in cross-cultural nlp. arXiv preprint arXiv:2203.10020, 2022. URL: https://arxiv.org/pdf/2203.10020.pdf.

[HF19]

Airo Hino and Robert A Fahey. Representing the twittersphere: archiving a representative sample of twitter data under resource constraints. International journal of information management, 48:175–184, 2019.

[HP21]

Dirk Hovy and Shrimai Prabhumoye. Five sources of bias in natural language processing. Language and Linguistics Compass, 15(8):e12432, 2021. URL: https://compass.onlinelibrary.wiley.com/doi/pdf/10.1111/lnc3.12432.

[HS16]

Dirk Hovy and Shannon L Spruit. The social impact of natural language processing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 591–598. 2016. URL: https://aclanthology.org/P16-2096/.

[ICN20]

Said A. Ibrahim, Mary E. Charlson, and Daniel B. Neill. Big data analytics and the struggle for equity in health care: the promise and perils. Health Equity, 4(1):99–101, 2020. URL: https://doi.org/10.1089/heq.2019.0112, doi:10.1089/heq.2019.0112.

[JM14]

Dan Jurafsky and James H Martin. Speech and language processing. vol. 3. US: Prentice Hall, 2014.

[JTJ17]

David Jurgens, Yulia Tsvetkov, and Dan Jurafsky. Incorporating dialectal variability for socially equitable language identification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 51–57. 2017. URL: https://aclanthology.org/P17-2009/.

[KCP10]

Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware decision tree learning. In 2010 IEEE international conference on data mining, 869–874. IEEE, 2010. URL: https://ieeexplore.ieee.org/document/5694053.

[KG23]

Sushim Kanchan and Abhay Gaidhane. Social media role and its impact on public health: a narrative review. Cureus, 2023.

[K+01]

Laurence J Kirmayer and others. Cultural variations in the clinical presentation of depression and anxiety: implications for diagnosis and treatment. Journal of clinical psychiatry, 62:22–30, 2001. URL: https://www.psychiatrist.com/read-pdf/3973/.

[KAA+21]

Isaac S Kohane, Bruce J Aronow, Paul Avillach, Brett K Beaulieu-Jones, Riccardo Bellazzi, Robert L Bradford, Gabriel A Brat, Mario Cannataro, James J Cimino, Natalia García-Barrio, and Nils Gehlenborg. What every reader should know about studies using electronic health record data but may be afraid to ask. Journal of medical Internet research, Mar 2021. doi:10.2196/22219.

[KRO20]

Manish Kumar, Rahul Roy, and Kevin D Oden. Identifying bias in machine learning algorithms: classification without discriminaion. The RMA Journal, pages 42–48, Sep 2020. URL: https://kdoden.com/wp-content/uploads/2020/12/Detecting-and-Correcting-for-Bias-in-Machine-Learning-Models.pdf.

[LWKO22]

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning: a survey. Information Fusion, 85:1–22, 2022.

[LPD13]

Alex Lamb, Michael J. Paul, and Mark Dredze. Separating fact from fear: tracking flu infections on Twitter. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 789–795. Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL: https://aclanthology.org/N13-1097.

[LHK+22]

Max-Philipp Lentzen, Viola Huebenthal, Rolf Kaiser, Matthias Kreppel, Joachim E Zoeller, and Matthias Zirk. A retrospective analysis of social media posts pertaining to covid-19 vaccination side effects. Vaccine, 40(1):43–51, 2022. URL: https://doi.org/10.1016/j.vaccine.2021.11.052.

[LYC+21]

Jiang Li, Xiaowei S Yan, Durgesh Chaudhary, Venkatesh Avula, Satish Mudiganti, Hannah Husby, Shima Shahjouei, Ardavan Afshar, Walter F Stewart, Mohammed Yeasin, and others. Imputation of missing values for electronic health record laboratory data. NPJ digital medicine, 4(1):147, 2021.

[LSA15]

Peng Li, Elizabeth A Stuart, and David B Allison. Multiple imputation: a flexible tool for handling missing data. Jama, 314(18):1966–1967, 2015.

[LE21]

C. Libby and J. Ehrenfeld. Facial recognition technology in 2021: masks, bias, and the future of healthcare. Journal of Medical Systems, 45(4):39, 2021. URL: https://pubmed.ncbi.nlm.nih.gov/33604732/.

[Man21]

Christopher Manning. Lecture 7: machine translation, sequence-to-sequence and attention. 2021. URL: https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf.

[MH18]

Hamid Mansoor and Lane Harrison. Data visualization literacy and visualization biases: cases for merging parallel threads. Cognitive biases in visualizations, pages 87–96, 2018.

[MBT+18]

Suzanna A. Martinez, Laura A. Beebe, Douglas M. Thompson, Theodore L. Wagener, Daniel R. Terrell, and Julia E. Campbell. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking. PLOS ONE, 2018. doi:10.1371/journal.pone.0192451.

[MGCT19]

Rowan Hall Maudslay, Hila Gonen, Ryan Cotterell, and Simone Teufel. It's all in the name: mitigating gender bias with name-based counterfactual data substitution. arXiv preprint arXiv:1909.00871, 2019. URL: https://aclanthology.org/D19-1530/.

[MM22]

G. M. McLoughlin and O. Martinez. Dissemination and implementation science to advance health equity: an imperative for systemic change. Commonhealth (Phila), 3(2):75–86, Jun 2022. doi:10.1026/j.commonhealth.2022.02.007.

[MBC14]

Salimah H. Meghani, Eeeseung Byun, and Jesse Chittams. Conducting research with vulnerable populations: cautions and considerations in interpreting outliers in disparities research. AIMS Public Health, 1(1):25–32, 2014. doi:10.3934/publichealth.2014.1.25.

[MMS+21]

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on bias and fairness in machine learning. ACM Comput. Surv., jul 2021. URL: https://doi.org/10.1145/3457607, doi:10.1145/3457607.

[MIR+15]

Sarah J Miller, Steven H Iztkowitz, William H Redd, Hayley S Thompson, Heiddis B Valdimarsdottir, and Lina Jandorf. Colonoscopy-specific fears in african americans and hispanics. Behavioral Medicine, 41(2):41–48, 2015.

[MSP+19]

Prabhaker Mishra, Usha Singh, Chandrakant M. Pandey, Priya Mishra, and Govind Pandey. Application of student's t-test, analysis of variance, and covariance. Annals of cardiac anaesthesia, 22(4):407–411, 2019. doi:10.4103/aca.ACA_94_19.

[ML17]

Fred Morstatter and Huan Liu. Discovering, assessing, and mitigating data bias in social media. Online Social Networks and Media, 1:1–13, 2017. URL: https://doi.org/10.1016/j.osnem.2017.01.001.

[NHH19]

Jasmine Y Nakayama, Vicki Hertzberg, and Joyce C Ho. Making sense of abbreviations in nursing notes: a case study on mortality prediction. AMIA Summits on Translational Science Proceedings, 2019:275, 2019. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568120/.

[NDL+12]

Gregory A Nichols, Jay Desai, Jennifer Elston Lafata, Jean M Lawrence, Patrick J O’Connor, Ram D Pathak, Marsha A Raebel, Robert J Reid, Joseph V Selby, Barbara G Silverman, and others. Construction of a multisite datalink using electronic health records for the identification, surveillance, prevention, and management of diabetes mellitus: the supreme-dm project. Preventing chronic disease, 2012. doi:10.5888/pcd9.110311.

[NHA+21]

Natalia Norori, Qiyang Hu, Florence Marcelle Aellen, Francesca Dalia Faraci, and Athina Tzovara. Addressing bias in big data and ai for health care: a call for open science. Patterns, 2(10):100347, 2021. URL: https://www.sciencedirect.com/science/article/pii/S2666389921002026, doi:https://doi.org/10.1016/j.patter.2021.100347.

[ODonnellvDWL08]

Owen O'Donnell, Eddy van Doorslaer, Adam Wagstaff, and Magnus Lindelow. Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation. World Bank, Washington, DC, 2008. License: CC BY 3.0 IGO. URL: http://hdl.handle.net/10986/6896.

[OPVM19]

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.

[OS17]

Frank Oemig and Robert Snelick. Healthcare interoperability standards compliance handbook. Springer, 2017.

[OCDKiciman19]

Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kıcıman. Social data: biases, methodological pitfalls, and ethical boundaries. Frontiers in Big Data, 2:13, 2019. URL: https://doi.org/10.3389/fdata.2019.00013.

[OAGG19]

Oscar L Olvera Astivia, Anne Gadermann, and Martin Guhn. The relationship between statistical power and predictor distribution in multilevel logistic regression: a simulation-based approach. BMC medical research methodology, 19(1):1–20, 2019.

[PA21]

Ankur A Patel and Ajay Uppili Arasanipalai. Applied Natural Language Processing in the Enterprise. O'Reilly Media, Inc., 2021. URL: https://www.oreilly.com/library/view/applied-natural-language/9781492062561/.

[PDB14]

Michael J Paul, Mark Dredze, and David Broniatowski. Twitter improves influenza forecasting. PLoS currents, 2014. URL: https://doi.org/10.1371%2Fcurrents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117.

[PMCF+17]

Alma B Pedersen, Ellen M Mikkelsen, Deirdre Cronin-Fenton, Nickolaj R Kristensen, Tra My Pham, Lars Pedersen, and Irene Petersen. Missing data and multiple imputation in clinical epidemiological research. Clinical epidemiology, pages 157–166, 2017.

[PAL20]

Marcelo OR Prates, Pedro H Avelar, and Luís C Lamb. Assessing gender bias in machine translation: a case study with google translate. Neural Computing and Applications, 32(10):6363–6381, 2020. URL: https://link.springer.com/article/10.1007/s00521-019-04144-6.

[RHH18]

Alvin Rajkomar, Michaela Hardt, and Michael D. Howell. Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, December 2018. URL: https://www.acpjournals.org/doi/10.7326/M18-1990, doi:10.7326/M18-1990.

[RLZM20]

Akhil Anil Rajput, Qingchun Li, Cheng Zhang, and Ali Mostafavi. Temporal network analysis of inter-organizational communications on social media during disasters: a study of hurricane harvey in houston. International journal of disaster risk reduction, 46:101622, 2020. URL: https://doi.org/10.1016/j.ijdrr.2020.101622.

[RHTBanelyte+20]

Tony Ross-Hellauer, Jonathan P Tennant, Viltė Banelytė, Edit Gorogh, Daniela Luzi, Peter Kraker, Lucio Pisacane, Roberta Ruggieri, Electra Sifacaki, and Michela Vignoli. Ten simple rules for innovative dissemination of research. 2020.

[SGarciaBS20]

Loukas Samaras, Elena García-Barriocanal, and Miguel-Angel Sicilia. Comparing social media and google to detect and predict severe epidemics. Scientific reports, 10(1):1–11, 2020. URL: https://www.nature.com/articles/s41598-020-61686-9.

[Sas]

Sassoftware. Enlighten-apply/ml_tables at master · sassoftware/enlighten-apply. URL: sassoftware/enlighten-apply.

[SKBP+20]

Carsten Schwemmer, Carly Knight, Emily D. Bello-Pardo, Stan Oklobdzija, Martijn Schoonvelde, and Jeffrey W. Lockhart. Diagnosing gender bias in image recognition systems. socius: sociological research for a dynamic world. Socius: Sociological Research for a Dynamic World, 6:1–17, 2020. URL: https://pubmed.ncbi.nlm.nih.gov/35936509/.

[SKV23]

Benjamin Smith, Anahita Khojandi, and Rama Vasudevan. Bias in reinforcement learning: a review in healthcare applications. ACM Computing Surveys, 2023.

[SHW15]

Gary Solon, Steven J. Haider, and Jeffrey M. Wooldridge. Title of the article. Journal of Human Resources, 50(2):301–316, March 2015. doi:10.3368/jhr.50.2.301.

[SVM14]

C. O. S. Sorzano, J. Vargas, and A. Pascual Montano. A survey of dimensionality reduction techniques. 2014. URL: https://arxiv.org/abs/1403.2877, doi:10.48550/ARXIV.1403.2877.

[Suh06]

David Suhr. Exploratory or confirmatory factor analysis? In Proceedings of the 31st Annual SAS Users Group International Conference. Cary, NC, 2006. SAS Institute Inc. Paper Number: 200-31.

[TEA21]

N.M. Thomasian, C. Eickhoff, and E.Y. Adashi. Advancing health equity with artificial intelligence. Journal of public health policy, 42(4):602–611, 2021. doi:https://doi.org/10.1057/s41271-021-00319-5.

[TLBW05]

Anne M Turner, Elizabeth D Liddy, Jana Bradley, and Joyce A Wheatley. Modeling public health interventions for improved access to the gray literature. Journal of the Medical Library Association, 93(4):487, 2005. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1250325/.

[VDK18]

missing publisher in valliant2013practical

[vKugelgenGScholkopf21]

Julius von Kügelgen, Luigi Gresele, and Bernhard Schölkopf. Simpson's paradox in covid-19 case fatality rates: a mediation analysis of age-related causal effects. IEEE Transactions on Artificial Intelligence, 2(1):18–27, 2021. doi:10.1109/TAI.2021.3073088.

[WBR+20]

Dominic Waithe, Jill M. Brown, Katharina Reglinski, Isabel Diez-Sevilla, David Roberts, and Christian Eggeling. Object detection networks and augmented reality for cellular detection in fluorescence microscopy. Journal of Cellular Biology, 2020. URL: https://pubmed.ncbi.nlm.nih.gov/32854116/.

[WLZ+22]

Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman, Leslie Kim, Dora Zhao, Iroha Shirai, Arvind Narayanan, and Olga Russakovsky. Revise: a tool for measuring and mitigating bias in visual datasets. International Journal of Computer Vision, 2022. URL: https://arxiv.org/abs/2004.07999.

[WR21]

Zhiqi Wang and Ronald Rousseau. Covid-19, the yule-simpson paradox and research evaluation. Scientometrics, 126(4):3501–3511, 2021.

[XHM+20]

Dong Xu, Xiao Huang, Joseph Mango, Xiang Li, and Zhenlong Li. Simulating multi-exit evacuation using deep reinforcement learning. 2020. arXiv:2007.05783.

[YDF18]

Samuel Yeom, Anupam Datta, and Matt Fredrikson. Hunting for discriminatory proxies in linear regression models. Advances in Neural Information Processing Systems, 2018. URL: https://proceedings.neurips.cc/paper/2018/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf.

[ZWY+18]

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in coreference resolution: evaluation and debiasing methods. arXiv preprint arXiv:1804.06876, 2018. URL: https://arxiv.org/pdf/1804.06876.pdf.

[ZMWC19]

Ran Zmigrod, Sabrina J Mielke, Hanna Wallach, and Ryan Cotterell. Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. arXiv preprint arXiv:1906.04571, 2019. URL: https://aclanthology.org/P19-1161/.

[NationalIoBIaBioengineeringd.]

National Institute of Biomedical Imaging and Bioengineering. Artificial intelligence (ai). https://www.nibib.nih.gov/science-education/science-topics/artificial-intelligence-ai, n.d. [Accessed: 16-Mar-2022].