References#
Artificial intelligence (ai). URL: https://www.nibib.nih.gov/science-education/science-topics/artificial-intelligence-ai.
Biostatistics. https://www.merriam-webster.com/dictionary/biostatistics. Accessed 4 Aug. 2023.
Sam the chatbot. 2021. URL: https://www.headtohealth.gov.au/find-with-sam.
Text classification - introduction. Jul 2022. URL: https://developers.google.com/machine-learning/guides/text-classification.
Minale A Abebe, Joe Tekli, Fekade Getahun, Richard Chbeir, and Gilbert Tekli. Generic metadata representation framework for social-based event detection, description, and linkage. Knowledge-Based Systems, 188:104817, 2020. URL: https://doi.org/10.1016/j.knosys.2019.06.025.
Melissa J Azur, Elizabeth A Stuart, Constantine Frangakis, and Philip J Leaf. Multiple imputation by chained equations: what is it and how does it work? International journal of methods in psychiatric research, 20(1):40–49, 2011.
Oliver Baclic, Matthew Tunis, Kelsey Young, Coraline Doan, Howard Swerdfeger, and Justin Schonfeld. Artificial intelligence in public health: challenges and opportunities for public health made possible by advances in natural language processing. Canada Communicable Disease Report, 46(6):161, 2020. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343054/.
Elliot Bendoly. Fit, bias, and enacted sensemaking in data visualization: frameworks for continuous development in operations and supply chain management analytics. Journal of Business Logistics, 37(1):6–17, 2016.
David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012. URL: https://dl.acm.org/doi/pdf/10.1145/2133806.2133826.
Su Lin Blodgett and Brendan O'Connor. Racial disparity in natural language processing: a case study of social media african-american english. arXiv preprint arXiv:1707.00061, 2017. URL: https://arxiv.org/abs/1707.00061.
Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural information processing systems, 2016. URL: https://arxiv.org/abs/1607.06520.
Azzedine Boukerche, Lining Zheng, and Omar Alfandi. Outlier detection: methods, models, and classification. ACM Computing Surveys, 53:1–37, 06 2020. doi:10.1145/3381028.
Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich. Data validation for machine learning. In MLSys. 2019.
S. E. Brossette, A. P. Sprague, J. M. Hardin, K. B. Waites, W. T. Jones, and S. A. Moser. Association rules and data mining in hospital infection control and public health surveillance. Journal of the American Medical Informatics Association, 5(4):373–381, 1998. doi:10.1136/jamia.1998.0050373.
Jason Brownlee. Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery, 2020.
Mohamad Adam Bujang, Nadiah Sa’at, Tg Mohd Ikhwan Tg Abu Bakar, Lim Chien Joo, and others. Sample size guidelines for logistic regression from observational studies with large population: emphasis on the accuracy between statistics and parameters based on real life clinical data. The Malaysian journal of medical sciences: MJMS, 25(4):122, 2018.
Joy Buolamwini. Gender shades: intersectional accuracy disparities in commercial gender classification. proceedings of machine learning research. Proceedings of Machine Learning Research, 81:1–15, 2018. URL: https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf.
Jennifer Burney. Bias and error in econometric analyses using spatial data. URL: https://pdel.ucsd.edu/environment/econometric-analyses.html.
Aylin Caliskan. Detecting and mitigating bias in natural language processing. Res. Rep, Brookings Inst., Washington, DC [Google Scholar], 2021. URL: https://www.brookings.edu/research/detecting-and-mitigating-bias-in-natural-language-processing/.
Bernadette Capili. Overview: cross-sectional studies. The American journal of nursing, 121(10):59, 2021.
Jaime G. Carbonell, Ryszard S. Michalski, and Tom M. Mitchell. 1 - an overview of machine learning. In Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors, Machine Learning, pages 3–23. Morgan Kaufmann, San Francisco (CA), 1983. URL: https://www.sciencedirect.com/science/article/pii/B9780080510545500054, doi:https://doi.org/10.1016/B978-0-08-051054-5.50005-4.
Harsh Chandra. Artificial intelligence (ai) vs machine learning (ml) vs big data. Heartbeat. https://heartbeat. fritz. ai/artificial-intelligence-ai-vs-machine-learning-ml-vs-big-data-909906eb6a92, 2019.
Irene Chen, Fredrik D. Johansson, and David Sontag. Why is my classifier discriminatory? Advances in Neural Information Information Processing Systems, 31:3543–3554, December 2018. URL: https://arxiv.org/abs/1805.12002, doi:10.48550/ARXIV.1805.12002.
Mike Conway, Mengke Hu, and Wendy W Chapman. Recent advances in using natural language processing to address public health research questions using social media and consumergenerated data. Yearbook of medical informatics, 28(01):208–217, 2019. URL: https://doi.org/10.1055/s-0039-1677918.
Brenda Curtis, Salvatore Giorgi, Anneke EK Buffone, Lyle H Ungar, Robert D Ashford, Jessie Hemmons, Dan Summers, Casey Hamilton, and H Andrew Schwartz. Can twitter be used to predict county excessive alcohol consumption rates? PloS one, 13(4):e0194290, 2018. URL: https://pubmed.ncbi.nlm.nih.gov/29617408/.
Brian d'Alessandro, Cathy O'Neil, and Tom LaGatta. Conscientious classification: a data scientist's guide to discrimination-aware classification. Big data, 5(2):120–134, 2017. URL: https://www.liebertpub.com/doi/10.1089/big.2016.0048.
Hercules Dalianis. Basic building blocks for clinical text processing. In Clinical Text Mining, pages 55–82. Springer, 2018. URL: https://link.springer.com/chapter/10.1007/978-3-319-78503-5_7.
Ashlynn R Daughton, Rumi Chunara, and Michael J Paul. Comparison of social media, syndromic surveillance, and microbiologic acute respiratory infection data: observational study. JMIR public health and surveillance, 6(2):e14986, 2020. URL: https://doi.org/10.2196/14986.
T. Davenport and R. Kalakota. The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2):94–98, 2019. URL: https://doi.org/10.7861/futurehosp.6-2-94, doi:10.7861/futurehosp.6-2-94.
Sanket S Dhruva, Joseph S Ross, Joseph G Akar, Brittany Caldwell, Karla Childers, Wing Chow, Laura Ciaccio, Paul Coplan, Jun Dong, Hayley J Dykhoff, and others. Aggregating multiple real-world data sources using a patient-centered health-data-sharing platform. NPJ digital medicine, 3(1):60, 2020.
Emily Dinan, Angela Fan, Adina Williams, Jack Urbanek, Douwe Kiela, and Jason Weston. Queens are powerful too: mitigating gender bias in dialogue generation. arXiv preprint arXiv:1911.03842, 2019. URL: https://aclanthology.org/2020.emnlp-main.656/.
David Dorr, Cosmin A Bejan, Christie Pizzimenti, Sumeet Singh, Matt Storer, and Ana Quinones. Identifying patients with significant problems related to social determinants of health with natural language processing. In MEDINFO 2019: Health and Wellbeing e-Networks for All, pages 1456–1457. IOS Press, 2019. URL: https://ebooks.iospress.nl/publication/52247.
Vera Ehrenstein, Hadi Kharrazi, Harold Lehmann, and C. Oliver Taylor. Obtaining data from electronic health records. In Tools and Technologies for Registry Interoperability, Registries for Evaluating Patient Outcomes: A User's Guide, 3rd Edition, Addendum 2. Agency for Healthcare Research and Quality (US), Oct 2019. URL: https://www.ncbi.nlm.nih.gov/books/NBK555546/.
Keith Feldman, Reid A Johnson, and Nitesh V Chawla. The state of data in healthcare: path towards standardization. Journal of Healthcare Informatics Research, 2:248–271, 2018.
Sandra Ferketich and Joyce Verran. Focus on psychometrics. an overview of data transformation. Research in nursing & health, 17(5):393–396, 1994.
Susan Ferketich and Joyce Verran. An overview of data transformation. Research in Nursing & Health, 17(5):393–396, 1994. URL: https://doi.org/10.1002/nur.4770170510, doi:10.1002/nur.4770170510.
Yoko Franchetti. Use of propensity scoring and its application to real-world data: advantages, disadvantages, and methodological objectives explained to researchers without using mathematical equations. The Journal of Clinical Pharmacology, 62(3):304–319, 2022. doi:10.1002/jcph.1989.
P Fu, A Panneerselvam, B Clifford, A Dowlati, PC Ma, G Zeng, B Halmos, and RS Leidner. Simpson's paradox–aggregating and partitioning populations in health disparities of lung cancer patients. Statistical Methods in Medical Research, 24(6):937–948, 2015. doi:10.1177/0962280211434179.
Isaac Chun-Hai Fung, Zion Tsz Ho Tse, and King-Wa Fu. The use of social media in public health surveillance. Western Pacific surveillance and response journal: WPSAR, 6(2):3, 2015. URL: https://doi.org/10.5365%2FWPSAR.2015.6.1.019.
Kavita Ganesan. All you need to know about text preprocessing for nlp and machine learning. KDnuggets, 2019. URL: https://www.kdnuggets.com/2019/04/text-preprocessing-nlp-machine-learning.html.
Jerry Gao, Chunli Xie, and Chuanqi Tao. Big data validation and quality assurance – issuses, challenges, and needs. In 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), volume, 433–441. 2016. doi:10.1109/SOSE.2016.63.
Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural language generation: core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61:65–170, 2018. URL: https://www.jair.org/index.php/jair/article/view/11173.
Andrew Gelman, Iven Van Mechelen, Geert Verbeke, Daniel F Heitjan, and Michel Meulders. Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics, 61(1):74–85, 2005.
Mohammad Ghassemi, Tristan Naumann, Peter Schulam, Andrew L. Beam, Irene Y. Chen, and Rajesh Ranganath. A review of challenges and opportunities in machine learning for health. In AMIA Joint Summits on Translational Science proceedings, 191–200. 2020.
Omri Gottesman, Fredrik Johansson, Matthieu Komorowski, and et al. Guidelines for reinforcement learning in healthcare. Nature Medicine, 25(1):16–18, 2019. doi:10.1038/s41591-018-0310-5.
David Gotz, Shun Sun, and Nan Cao. Adaptive contextualization: combating bias during high-dimensional visualization and data selection. In Proceedings of the 21st International Conference on Intelligent User Interfaces, 85–95. 2016.
Steve Halligan, Douglas G Altman, and Susan Mallett. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. European radiology, 25(4):932–939, 2015. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356897/.
Sariel Har-Peled and Sepideh Mahabadi. Near neighbor: who is the fairest of them all? Advances in Neural Information Processing Systems, 2019. URL: https://papers.nips.cc/paper/2019/hash/742141ceda6b8f6786609d31c8ef129f-Abstract.html.
David Harbour. Types of data. URL: https://geol260.academic.wlu.edu/course-notes/introduction-and-data-types/3-types-of-data/.
Megan Healy, Alison Richard, and Khameer Kidia. How to reduce stigma and bias in clinical communication: a narrative review. Journal of General Internal Medicine, pages 1–8, 2022. URL: https://link.springer.com/article/10.1007/s11606-022-07609-y.
Daniel Hershcovich, Stella Frank, Heather Lent, Miryam de Lhoneux, Mostafa Abdou, Stephanie Brandl, Emanuele Bugliarello, Laura Cabello Piqueras, Ilias Chalkidis, Ruixiang Cui, and others. Challenges and strategies in cross-cultural nlp. arXiv preprint arXiv:2203.10020, 2022. URL: https://arxiv.org/pdf/2203.10020.pdf.
Airo Hino and Robert A Fahey. Representing the twittersphere: archiving a representative sample of twitter data under resource constraints. International journal of information management, 48:175–184, 2019.
Dirk Hovy and Shrimai Prabhumoye. Five sources of bias in natural language processing. Language and Linguistics Compass, 15(8):e12432, 2021. URL: https://compass.onlinelibrary.wiley.com/doi/pdf/10.1111/lnc3.12432.
Dirk Hovy and Shannon L Spruit. The social impact of natural language processing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 591–598. 2016. URL: https://aclanthology.org/P16-2096/.
IBM. Geospatial data. https://www.ibm.com/topics/geospatial-data#: :text=There%20are%20two%20primary%20forms,vector%20data%20and%20raster%20data.
Said A. Ibrahim, Mary E. Charlson, and Daniel B. Neill. Big data analytics and the struggle for equity in health care: the promise and perils. Health Equity, 4(1):99–101, 2020. URL: https://doi.org/10.1089/heq.2019.0112, doi:10.1089/heq.2019.0112.
Dan Jurafsky and James H Martin. Speech and language processing. vol. 3. US: Prentice Hall, 2014.
David Jurgens, Yulia Tsvetkov, and Dan Jurafsky. Incorporating dialectal variability for socially equitable language identification. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 51–57. 2017. URL: https://aclanthology.org/P17-2009/.
Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware decision tree learning. In 2010 IEEE international conference on data mining, 869–874. IEEE, 2010. URL: https://ieeexplore.ieee.org/document/5694053.
Sushim Kanchan and Abhay Gaidhane. Social media role and its impact on public health: a narrative review. Cureus, 2023.
Laurence J Kirmayer and others. Cultural variations in the clinical presentation of depression and anxiety: implications for diagnosis and treatment. Journal of clinical psychiatry, 62:22–30, 2001. URL: https://www.psychiatrist.com/read-pdf/3973/.
Isaac S Kohane, Bruce J Aronow, Paul Avillach, Brett K Beaulieu-Jones, Riccardo Bellazzi, Robert L Bradford, Gabriel A Brat, Mario Cannataro, James J Cimino, Natalia García-Barrio, and Nils Gehlenborg. What every reader should know about studies using electronic health record data but may be afraid to ask. Journal of medical Internet research, Mar 2021. doi:10.2196/22219.
Manish Kumar, Rahul Roy, and Kevin D Oden. Identifying bias in machine learning algorithms: classification without discriminaion. The RMA Journal, pages 42–48, Sep 2020. URL: https://kdoden.com/wp-content/uploads/2020/12/Detecting-and-Correcting-for-Bias-in-Machine-Learning-Models.pdf.
Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement learning: a survey. Information Fusion, 85:1–22, 2022.
Alex Lamb, Michael J. Paul, and Mark Dredze. Separating fact from fear: tracking flu infections on Twitter. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 789–795. Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL: https://aclanthology.org/N13-1097.
Max-Philipp Lentzen, Viola Huebenthal, Rolf Kaiser, Matthias Kreppel, Joachim E Zoeller, and Matthias Zirk. A retrospective analysis of social media posts pertaining to covid-19 vaccination side effects. Vaccine, 40(1):43–51, 2022. URL: https://doi.org/10.1016/j.vaccine.2021.11.052.
Jiang Li, Xiaowei S Yan, Durgesh Chaudhary, Venkatesh Avula, Satish Mudiganti, Hannah Husby, Shima Shahjouei, Ardavan Afshar, Walter F Stewart, Mohammed Yeasin, and others. Imputation of missing values for electronic health record laboratory data. NPJ digital medicine, 4(1):147, 2021.
Peng Li, Elizabeth A Stuart, and David B Allison. Multiple imputation: a flexible tool for handling missing data. Jama, 314(18):1966–1967, 2015.
C. Libby and J. Ehrenfeld. Facial recognition technology in 2021: masks, bias, and the future of healthcare. Journal of Medical Systems, 45(4):39, 2021. URL: https://pubmed.ncbi.nlm.nih.gov/33604732/.
Christopher Manning. Lecture 7: machine translation, sequence-to-sequence and attention. 2021. URL: https://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf.
Hamid Mansoor and Lane Harrison. Data visualization literacy and visualization biases: cases for merging parallel threads. Cognitive biases in visualizations, pages 87–96, 2018.
Suzanna A. Martinez, Laura A. Beebe, Douglas M. Thompson, Theodore L. Wagener, Daniel R. Terrell, and Julia E. Campbell. A structural equation modeling approach to understanding pathways that connect socioeconomic status and smoking. PLOS ONE, 2018. doi:10.1371/journal.pone.0192451.
Rowan Hall Maudslay, Hila Gonen, Ryan Cotterell, and Simone Teufel. It's all in the name: mitigating gender bias with name-based counterfactual data substitution. arXiv preprint arXiv:1909.00871, 2019. URL: https://aclanthology.org/D19-1530/.
G. M. McLoughlin and O. Martinez. Dissemination and implementation science to advance health equity: an imperative for systemic change. Commonhealth (Phila), 3(2):75–86, Jun 2022. doi:10.1026/j.commonhealth.2022.02.007.
Salimah H. Meghani, Eeeseung Byun, and Jesse Chittams. Conducting research with vulnerable populations: cautions and considerations in interpreting outliers in disparities research. AIMS Public Health, 1(1):25–32, 2014. doi:10.3934/publichealth.2014.1.25.
Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on bias and fairness in machine learning. ACM Comput. Surv., jul 2021. URL: https://doi.org/10.1145/3457607, doi:10.1145/3457607.
Sarah J Miller, Steven H Iztkowitz, William H Redd, Hayley S Thompson, Heiddis B Valdimarsdottir, and Lina Jandorf. Colonoscopy-specific fears in african americans and hispanics. Behavioral Medicine, 41(2):41–48, 2015.
Prabhaker Mishra, Usha Singh, Chandrakant M. Pandey, Priya Mishra, and Govind Pandey. Application of student's t-test, analysis of variance, and covariance. Annals of cardiac anaesthesia, 22(4):407–411, 2019. doi:10.4103/aca.ACA_94_19.
Fred Morstatter and Huan Liu. Discovering, assessing, and mitigating data bias in social media. Online Social Networks and Media, 1:1–13, 2017. URL: https://doi.org/10.1016/j.osnem.2017.01.001.
Jasmine Y Nakayama, Vicki Hertzberg, and Joyce C Ho. Making sense of abbreviations in nursing notes: a case study on mortality prediction. AMIA Summits on Translational Science Proceedings, 2019:275, 2019. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568120/.
Gregory A Nichols, Jay Desai, Jennifer Elston Lafata, Jean M Lawrence, Patrick J O’Connor, Ram D Pathak, Marsha A Raebel, Robert J Reid, Joseph V Selby, Barbara G Silverman, and others. Construction of a multisite datalink using electronic health records for the identification, surveillance, prevention, and management of diabetes mellitus: the supreme-dm project. Preventing chronic disease, 2012. doi:10.5888/pcd9.110311.
Natalia Norori, Qiyang Hu, Florence Marcelle Aellen, Francesca Dalia Faraci, and Athina Tzovara. Addressing bias in big data and ai for health care: a call for open science. Patterns, 2(10):100347, 2021. URL: https://www.sciencedirect.com/science/article/pii/S2666389921002026, doi:https://doi.org/10.1016/j.patter.2021.100347.
Owen O'Donnell, Eddy van Doorslaer, Adam Wagstaff, and Magnus Lindelow. Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation. World Bank, Washington, DC, 2008. License: CC BY 3.0 IGO. URL: http://hdl.handle.net/10986/6896.
Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.
Frank Oemig and Robert Snelick. Healthcare interoperability standards compliance handbook. Springer, 2017.
Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kıcıman. Social data: biases, methodological pitfalls, and ethical boundaries. Frontiers in Big Data, 2:13, 2019. URL: https://doi.org/10.3389/fdata.2019.00013.
Oscar L Olvera Astivia, Anne Gadermann, and Martin Guhn. The relationship between statistical power and predictor distribution in multilevel logistic regression: a simulation-based approach. BMC medical research methodology, 19(1):1–20, 2019.
Ankur A Patel and Ajay Uppili Arasanipalai. Applied Natural Language Processing in the Enterprise. O'Reilly Media, Inc., 2021. URL: https://www.oreilly.com/library/view/applied-natural-language/9781492062561/.
Michael J Paul, Mark Dredze, and David Broniatowski. Twitter improves influenza forecasting. PLoS currents, 2014. URL: https://doi.org/10.1371%2Fcurrents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117.
Alma B Pedersen, Ellen M Mikkelsen, Deirdre Cronin-Fenton, Nickolaj R Kristensen, Tra My Pham, Lars Pedersen, and Irene Petersen. Missing data and multiple imputation in clinical epidemiological research. Clinical epidemiology, pages 157–166, 2017.
Marcelo OR Prates, Pedro H Avelar, and Luís C Lamb. Assessing gender bias in machine translation: a case study with google translate. Neural Computing and Applications, 32(10):6363–6381, 2020. URL: https://link.springer.com/article/10.1007/s00521-019-04144-6.
Alvin Rajkomar, Michaela Hardt, and Michael D. Howell. Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine, December 2018. URL: https://www.acpjournals.org/doi/10.7326/M18-1990, doi:10.7326/M18-1990.
Akhil Anil Rajput, Qingchun Li, Cheng Zhang, and Ali Mostafavi. Temporal network analysis of inter-organizational communications on social media during disasters: a study of hurricane harvey in houston. International journal of disaster risk reduction, 46:101622, 2020. URL: https://doi.org/10.1016/j.ijdrr.2020.101622.
Tony Ross-Hellauer, Jonathan P Tennant, Viltė Banelytė, Edit Gorogh, Daniela Luzi, Peter Kraker, Lucio Pisacane, Roberta Ruggieri, Electra Sifacaki, and Michela Vignoli. Ten simple rules for innovative dissemination of research. 2020.
Loukas Samaras, Elena García-Barriocanal, and Miguel-Angel Sicilia. Comparing social media and google to detect and predict severe epidemics. Scientific reports, 10(1):1–11, 2020. URL: https://www.nature.com/articles/s41598-020-61686-9.
Sassoftware. Enlighten-apply/ml_tables at master · sassoftware/enlighten-apply. URL: sassoftware/enlighten-apply.
Carsten Schwemmer, Carly Knight, Emily D. Bello-Pardo, Stan Oklobdzija, Martijn Schoonvelde, and Jeffrey W. Lockhart. Diagnosing gender bias in image recognition systems. socius: sociological research for a dynamic world. Socius: Sociological Research for a Dynamic World, 6:1–17, 2020. URL: https://pubmed.ncbi.nlm.nih.gov/35936509/.
Benjamin Smith, Anahita Khojandi, and Rama Vasudevan. Bias in reinforcement learning: a review in healthcare applications. ACM Computing Surveys, 2023.
Gary Solon, Steven J. Haider, and Jeffrey M. Wooldridge. Title of the article. Journal of Human Resources, 50(2):301–316, March 2015. doi:10.3368/jhr.50.2.301.
C. O. S. Sorzano, J. Vargas, and A. Pascual Montano. A survey of dimensionality reduction techniques. 2014. URL: https://arxiv.org/abs/1403.2877, doi:10.48550/ARXIV.1403.2877.
David Suhr. Exploratory or confirmatory factor analysis? In Proceedings of the 31st Annual SAS Users Group International Conference. Cary, NC, 2006. SAS Institute Inc. Paper Number: 200-31.
N.M. Thomasian, C. Eickhoff, and E.Y. Adashi. Advancing health equity with artificial intelligence. Journal of public health policy, 42(4):602–611, 2021. doi:https://doi.org/10.1057/s41271-021-00319-5.
Anne M Turner, Elizabeth D Liddy, Jana Bradley, and Joyce A Wheatley. Modeling public health interventions for improved access to the gray literature. Journal of the Medical Library Association, 93(4):487, 2005. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1250325/.
missing publisher in valliant2013practical
Julius von Kügelgen, Luigi Gresele, and Bernhard Schölkopf. Simpson's paradox in covid-19 case fatality rates: a mediation analysis of age-related causal effects. IEEE Transactions on Artificial Intelligence, 2(1):18–27, 2021. doi:10.1109/TAI.2021.3073088.
Dominic Waithe, Jill M. Brown, Katharina Reglinski, Isabel Diez-Sevilla, David Roberts, and Christian Eggeling. Object detection networks and augmented reality for cellular detection in fluorescence microscopy. Journal of Cellular Biology, 2020. URL: https://pubmed.ncbi.nlm.nih.gov/32854116/.
Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman, Leslie Kim, Dora Zhao, Iroha Shirai, Arvind Narayanan, and Olga Russakovsky. Revise: a tool for measuring and mitigating bias in visual datasets. International Journal of Computer Vision, 2022. URL: https://arxiv.org/abs/2004.07999.
Zhiqi Wang and Ronald Rousseau. Covid-19, the yule-simpson paradox and research evaluation. Scientometrics, 126(4):3501–3511, 2021.
Dong Xu, Xiao Huang, Joseph Mango, Xiang Li, and Zhenlong Li. Simulating multi-exit evacuation using deep reinforcement learning. 2020. arXiv:2007.05783.
Samuel Yeom, Anupam Datta, and Matt Fredrikson. Hunting for discriminatory proxies in linear regression models. Advances in Neural Information Processing Systems, 2018. URL: https://proceedings.neurips.cc/paper/2018/file/6cd9313ed34ef58bad3fdd504355e72c-Paper.pdf.
Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Gender bias in coreference resolution: evaluation and debiasing methods. arXiv preprint arXiv:1804.06876, 2018. URL: https://arxiv.org/pdf/1804.06876.pdf.
Ran Zmigrod, Sabrina J Mielke, Hanna Wallach, and Ryan Cotterell. Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. arXiv preprint arXiv:1906.04571, 2019. URL: https://aclanthology.org/P19-1161/.
National Institute of Biomedical Imaging and Bioengineering. Artificial intelligence (ai). https://www.nibib.nih.gov/science-education/science-topics/artificial-intelligence-ai, n.d. [Accessed: 16-Mar-2022].