Skip to main content
Ctrl+K

CDC Health Equity AI Training

Site Navigation

  • Introduction to Health Equity Science
  • Data Sources
  • Section 1. Electronic Health Records
  • Section 2. Claims Data
  • Section 3. Social Media Data
  • Section 4. Survey Data
  • Section 5. Geospatial Data
  • Data Characterization
  • Section 1. Descriptive Statistics
  • Section 2. Data Visualization
  • Data Preparation and Health Equity
  • Section 1. Data Cleaning
  • Section 2. Sample Weighting
  • Section 3. Data Validation
  • Analytics and Health Equity
  • Section 1. Biostatistics
  • Section 2. Machine Learning
  • Section 3. Natural Language Processing
  • Section 4. Computer Vision
  • Dissemination
  • Conclusion
  • References

Site Navigation

  • Introduction to Health Equity Science
  • Data Sources
  • Section 1. Electronic Health Records
  • Section 2. Claims Data
  • Section 3. Social Media Data
  • Section 4. Survey Data
  • Section 5. Geospatial Data
  • Data Characterization
  • Section 1. Descriptive Statistics
  • Section 2. Data Visualization
  • Data Preparation and Health Equity
  • Section 1. Data Cleaning
  • Section 2. Sample Weighting
  • Section 3. Data Validation
  • Analytics and Health Equity
  • Section 1. Biostatistics
  • Section 2. Machine Learning
  • Section 3. Natural Language Processing
  • Section 4. Computer Vision
  • Dissemination
  • Conclusion
  • References

CDC Health Equity AI Training

Ctrl+K
  • CDC Health Equity Data Science Learning Guide

Unit 1 - Introduction

  • Introduction to Health Equity Science

Unit 2 - Health Data Sources

  • Data Sources
  • Section 1. Electronic Health Records
  • Section 2. Claims Data
  • Section 3. Social Media Data
  • Section 4. Survey Data
  • Section 5. Geospatial Data

Unit 3 - Data Characterization

  • Data Characterization
  • Section 1. Descriptive Statistics
  • Section 2. Data Visualization

Unit 4 - Data Preparation

  • Data Preparation and Health Equity
  • Section 1. Data Cleaning
    • Lesson 1. Addressing Missing Values
    • Lesson 2. Data Transformation
    • Lesson 3. Handling Outliers
  • Section 2. Sample Weighting
  • Section 3. Data Validation

Unit 5 - Analytics

  • Analytics and Health Equity
  • Section 1. Biostatistics
  • Section 2. Machine Learning
    • Lesson 1. Supervised Learning
    • Lesson 2. Unsupervised Learning
    • Lesson 3. Reinforcement Learning
  • Section 3. Natural Language Processing
  • Section 4. Computer Vision

Unit 6 - Dissemination

  • Dissemination

Unit 7 - Conclusion

  • Conclusion

Resources

  • References

Index

A | C | F | H | I | N | U

A

  • ACR
  • ACS
  • AGA
  • AHRQ
  • ASCCP

C

  • CHC
  • CMS

F

  • FQHC

H

  • HRSA

I

  • IHS

N

  • NCAI
  • NCCRT
  • NCQA
  • NIH
  • NIHB

U

  • USPSTF

By Office of Science

Last updated on None.